AP Calculus Preparation at the Khan Academy
Algebra
Manipulating expressions
- Know how to manipulate polynomial expressions.
- Adding: (x^2 + 2x + 3) + (3x^2 – 3x) = 4x^2 – x + 3(x2+2x+3)+(3x2−3x)=4x2−x+3left parenthesis, x, start superscript, 2, end superscript, plus, 2, x, plus, 3, right parenthesis, plus, left parenthesis, 3, x, start superscript, 2, end superscript, minus, 3, x, right parenthesis, equals, 4, x, start superscript, 2, end superscript, minus, x, plus, 3
- Multiplying and Factoring: (x + 2)(3x – 5) \Leftrightarrow 3x^2 + x – 10(x+2)(3x−5)⇔3x2+x−10
-
Know how to solve simple linear equations.
- For example, 2x + 3 = 5x – 72x+3=5x−72, x, plus, 3, equals, 5, x, minus, 7
-
Know how to solve quadratic equations, such as 2x^2 + 3x – 5 = 02x2+3x−5=02, x, start superscript, 2, end superscript, plus, 3, x, minus, 5, equals, 0
-
Know the properties of exponents.
- x^2 y^2 = (xy)^2x2y2=(xy)2x, start superscript, 2, end superscript, y, start superscript, 2, end superscript, equals, left parenthesis, x, y, right parenthesis, start superscript, 2, end superscript
- (2^x)(2^y) = 2^{x + y}(2x)(2y)=2x+yleft parenthesis, 2, start superscript, x, end superscript, right parenthesis, left parenthesis, 2, start superscript, y, end superscript, right parenthesis, equals, 2, start superscript, x, plus, y, end superscript
-
Know how certain expressions are secretly exponentials in disguise
- Reciprocals: For example, \dfrac{1}{x} = x^{-1}x1=x−1start fraction, 1, divided by, x, end fraction, equals, x, start superscript, minus, 1, end superscript
- Roots: For example, \sqrt{x} = x^{1/2}√x=x1/2square root of, x, end square root, equals, x, start superscript, 1, slash, 2, end superscript
-
Know what logarithms are, as well as their properties.
- y = 2^xy=2xy, equals, 2, start superscript, x, end superscript says the same thing as \log_2(y) = xlog2(y)=xlog, start subscript, 2, end subscript, left parenthesis, y, right parenthesis, equals, x.
- \log(x) + \log(y) = \log(xy)log(x)+log(y)=log(xy)log, left parenthesis, x, right parenthesis, plus, log, left parenthesis, y, right parenthesis, equals, log, left parenthesis, x, y, right parenthesis.
- \log(a^x) = x\log(a)log(ax)=xlog(a)log, left parenthesis, a, start superscript, x, end superscript, right parenthesis, equals, x, log, left parenthesis, a, right parenthesis.
Functions
Calculus is all about functions, so it is helpful to be pretty fluent when it comes to thinking about functions, graphing functions, and using the appropriate terminology when talking about functions.
-
Know how to represent a function with a graph.
-
Know the graphs of various elementary functions.
- Linear functions
- Quadratic functions
- Have at least a loose idea for what the graph of an n^{\text{th}}nthn, start superscript, t, h, end superscript degree polynomial might look like.
- Exponentials
- Logarithms
-
Know how to manipulate functions.
-
It’s also helpful to be familiar with function terminology
Geometry
-
Know how to compute the area of simple shapes.
Trigonometry
- Be comforatble with each of the basic trigonometry functions: \sin(x)sin(x)sine, left parenthesis, x, right parenthesis,\cos(x)cos(x)cosine, left parenthesis, x, right parenthesis and \tan(x)tan(x)tangent, left parenthesis, x, right parenthesis
- Know what each one represents.
- Know the values of these functions when xxx takes on one of the following values: 000, \dfrac{\pi}{6}6πstart fraction, pi, divided by, 6, end fraction, \dfrac{\pi}{4}4πstart fraction, pi, divided by, 4, end fraction, \dfrac{\pi}{3}3πstart fraction, pi, divided by, 3, end fraction, \dfrac{\pi}{2}2πstart fraction, pi, divided by, 2, end fraction.
- Know what the graph of each of these functions looks like.